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bstract

Coal ash fusion temperature is important to boiler designers and operators of power plants. Fusion temperature is determined by the chemical
omposition of coal ash, however, their relationships are not precisely known. A novel neural network, ACO-BP neural network, is used to model
oal ash fusion temperature based on its chemical composition. Ant colony optimization (ACO) is an ecological system algorithm, which draws its
nspiration from the foraging behavior of real ants. A three-layer network is designed with 10 hidden nodes. The oxide contents consist of the inputs

f the network and the fusion temperature is the output. Data on 80 typical Chinese coal ash samples were used for training and testing. Results
how that ACO-BP neural network can obtain better performance compared with empirical formulas and BP neural network. The well-trained
eural network can be used as a useful tool to predict coal ash fusion temperature according to the oxide contents of the coal ash.

2007 Published by Elsevier B.V.
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. Introduction

Coal ash fusion temperature is important to boiler designers
nd operators. The slagging potential of coal affects the thermal
fficiency and safe operation of steam boilers in coal-fired power
tations [1,2]. Coal with a low ash fusion temperature is vulner-
ble to slag. Melting coal ash accumulates around heat transfer
ipes and leads to corrosion of furnace components. Power sta-
ions have to shut down periodically to remove the clinker from
eat transfer pipes. Softening temperature (ST) of coal ash cor-
elates strongly to the slagging potential among the four fusion
emperatures, deformation temperature (DT), ST, hemisphere
emperature (HT) and flow temperature (FT); so the ash fusion
emperature denotes ST in this paper.

Coal is a complex heterogeneous mixture, and the inorganic
art transforms into ash during combustion [3]. Experimentally
btaining the fusion temperature is a time-consuming and trou-

lesome job and needs special instruments. Another way to
stimate ash fusion temperature is according to the chemical
omposition of coal ash, which is based on the fact that the
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hemical composition of coal ash determines its fusion temper-
ture [4–9]. However, coal ash is a complex mixture of mineral
atters, which mainly consists of SiO2, Al2O3, Fe2O3, CaO,
gO, K2O, Na2O, TiO2 and a few other oxides [2,10,11], and

he ash fusion temperature regression formulas include a number
f interacting factors whose relationship is not precisely known.
he results calculated by the empirical formula usually do not
ave sufficient accuracy when the types of coal vary in a large
ange.

Artificial neural networks have powerful, nonlinear, mapping
bility, and the modeling process is easier and more direct than
or empirical models. It is not necessary to specify mathemat-
cal relationships between the input and output variables. The
CO-BP algorithm is a novel method to train neural networks. It
vercomes the drawback in the back-propagation (BP) [12] algo-
ithm to converge on local optima when the training surface is
multimodal distribution. This paper demonstrates a method of
odeling coal ash fusion temperature with the ACO-BP neural

etwork based on its chemical composition.
. Methods

BP algorithm is currently the most widely used technique for
raining neural networks [13,14]. Suppose a set of P training
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Table 1
Pheromone table for each weight or bias
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amples is available, the problem can be characterized as the
rocess of minimizing the following sumsquared error:

(W) = 1

2

P∑

s=1

NM∑

i=1

(ds,i − yM
s,i)

2
(1)

here ds,i and yM
s,i are the ith target and actual outputs corre-

ponding to the sth training pattern, W is a vector composed of
ll the weights and biases involved in the network, and NM is the
umber of output units. In this scheme, an initial weight vector
0 is iteratively adapted according to the following recursion

o find an optimal weight vector. The positive constant η is the
earning rate.

k+1 = Wk − η
∂J(W)

∂W
(2)

The BP algorithm can be described as follows. In the first
hase, the actual outputs of the network are computed forward
rom the input layer to the output layer. While in the second
hase, the descent gradient is calculated in a back-propagation
ashion, which makes it possible to adjust the weights in a
escent direction. This procedure is repeatedly performed for
ach training pattern until all error signals between the desired
nd actual outputs are sufficiently small. Obviously, BP algo-
ithm is gradient descent in essence.

The ant colony optimization algorithm (ACO) draws its inspi-
ation from the behavior of real ants as they move from their
est towards a food source [15,16]. ACO has been success-
ully applied to solve some complex combinatorial optimization
roblems with NP-hard characteristic, such as traveling sales-
an problems (TSP) [17], quadratic assignment problems [18],

ehicle routing problems [19], and scheduling problems [20].
The basic idea of ACO-BP neural network can be depicted as

ollows. After the architecture of a neural network is selected,
t needs to be trained before being used. Given D parameters
n the network, which consist of all the weights and biases, the
etworks’ evolution can be regarded as the process of searching
or the optimal combination of the D parameters in their solution
paces. There are numerous candidate points for each parameter,
o the candidate combination solutions are also numerous, and
t is probable that the combinatorial optimization function has a

ultimodal distribution.
First, each parameter’s definition spaces are split into a set

f discrete points. Thus, each point is a candidate value of the
orresponding parameter. As far as an ant is concerned, it can
nly can choose a value for each parameter among the candidate

oints, just like an ant visiting a city only once in solving the
SP. A pheromone table, Table 1, is needed for each parameter,
here wi is the ith parameter to be optimized, ai denotes the
ivided calibration called a point, τ(i) represents the pheromone

s
t
n
2

able 2
inimum and maximum contents of the oxides

xides content SiO2 (%) Al2O3 (%) Fe2O3 (%)

inium 15.17 3.66 1.53
aximum 68.12 35.69 62.56
ag 1 2 . . . m + 1
plit calibration a1 a2 . . . am+1

heromone intensity τ(1) τ(2) . . . τ(m + 1)

ntensity of point ai, and m is the number of shares that the
pace is divided into. So there are (m + 1) total points for each
arameter.

Several groups of better combinations of parameters can be
rovided by the ACO scheme. The BP algorithm initializes the
eights of the network with these values and begins to train

he network. Since ACO provides the BP with several groups of
etter initial values, the risk of being trapped in the local optima
harply decreases. Consequently, both the training effectiveness
nd evolving speed can be enhanced. The basic idea of the hybrid
lgorithm of ACO and BP is to use ACO to search several groups
or better combinations of all the network parameters, and then
se the BP algorithm to find the accurate value of each parameter.
he detailed framework of the ACO-BP scheme is shown in
ig. 1. A complete description of the ACO-BP neural network

s given in [21].
Data on 80 typical coal ash samples from different parts of

hina are studied. The types of the coal include brown coal,
oft coal and anthracite coal, and their ranks range from low
o high. The limits of oxides in the chemical composition of
sh are shown in Table 2. The chemical composition of ash is
n weight basis. The data were divided into two subsets, 60 of
hich were used for training and the remainder used for testing

he network. To test the robustness and accuracy of the ACO-BP
pproach, the network was trained and tested with eight different
ombinations of the two subsets.

A three-layer feedforward neural network can approximate
ny nonlinear continuous function to an arbitrary accuracy [22],
o this architecture was adopted in our network model. Because
2O and Na2O have similar chemical characteristics in the

spect of influencing the ash fusion temperature, their contents
ere combined as one input. Therefore, seven neurons were
sed in the input layer to denote the oxide contents. One neuron
as adopted in the output layer to represent the fusion temper-

ture. There are no general rules to determine the number of
idden nodes [23]. The common way is to set a relative large
umber at the beginning, and then reduce it to satisfy the error
emand. By this method, the number of the hidden nodes is set
s 10 finally. The transfer function of the hidden layer was the

tandard sigmoid, and the function of output was purelin. For
he ACO-BP scheme, the number of ants, Wmin, Wmax and the
umber of maximum iteration were selected as 43, −2, +2 and
00, respectively. In the best solution-keeping scheme, 10 better

CaO (%) MgO (%) K2O + Na2O (%) TiO2 (%)

0.16 0.03 0.01 0.46
23.90 10.10 7.12 2.81
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Fig. 1. Framework of training neu

olutions were remembered. Both the BP in ACO-BP and the
P had the same parameter settings except that the iteration of

he former was set as 10,000 times, and the later used 30,000
imes. Each experiment was repeated 10 times independently.

. Results and discussion

.1. Comparison of ACO-BP and BP algorithms

Comparisons of output results using the ACO-BP and BP
eural networks are shown in Table 3, where training error and

redicting error are calculated by the following equation:

td (xi) = 1

M

M∑

i=1

|ŷ(xi) − yi|
yi

(3)

t
v
g
n

able 3
omparison of ACO-BP and BP neural networks

o. ACO-BP

Training error (%) Predicting error (%

1.50 3.81
1.44 6.73
1.53 6.97
1.39 6.41
1.78 4.02
1.55 4.17
1.47 4.72
1.76 4.41

verage 1.55 5.16
twork using ACO-BP algorithm.

here ŷ(xi) represents the neural network output when the input
s xi, yi denotes the actual fusion temperature, and M is the
umber of outputs. The results shown in Table 3 are the average
f 10 experiments.

The maximum training error of the ACO-BP algorithm is
.78%, the minimum error is 1.39% and the average training
rror is 1.55%. All are less than the corresponding training errors
f BP. More important, the ACO-BP obtained smaller predictive
rrors, 5.98% compared to 5.16%.

A group of randomly chosen training and testing results are
hown in Fig. 2. The ACO-BP training and testing samples are
niformly distributed near the line of 45◦, which indicates that

he outputs of the network accord well with the actual target
alues. Comparatively, the BP algorithm does not attain this
oal; the training samples are relatively uniformly distributed
ear the line of 45◦, but some of the testing samples are far

BP

) Training error (%) Predicting error (%)

1.76 4.44
1.99 8.87
1.83 8.07
1.78 7.75
2.02 4.11
1.78 4.71
1.75 5.30
1.93 4.57

1.85 5.98
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n of ACO-BP and BP neural networks.
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Fig. 2. The performance compariso

way from this line. The main reason lies in the fact that ACO-
P has a higher probability of escaping the local optima of the
rror surface than BP algorithm.

.2. Comparison of ACO-BP and empirical formulas

The regression formulas usually used for predicting coal ash
usion temperature in China [24] are:

1) When the content of the SiO2 is no larger than 60% and the
content of Al2O3 is larger than 30%, the fusion temperature
is calculated by

T = 69.94·SiO2 + 71.01·Al2O3 + 65.23·Fe2O3

+ 12.16·CaO + 68.31·MgO + 67.19·a − 5485.7

(4)

2) When the content of the SiO2 is no larger than 60%, the
content of Al2O3 is no larger than 30% and the content
of Fe2O3 is no larger than 15%, the fusion temperature is
calculated by

T = 92.55·SiO2 + 97.83·Al2O3 + 84.52·Fe2O3

+ 83.67·CaO + 81.04·MgO + 91.92·a − 7891 (5)

3) When the content of the SiO2 is no larger than 60%, the con-
tent of Al2O3 is no larger than 30% and the content of Fe2O3
is larger than 15%, the fusion temperature is calculated by

T = 1531 − 3.01·SiO2 + 5.08·Al2O3 − 8.02·Fe2O3

− 9.69·CaO − 5.861·MgO − 3.99·a (6)

4) When the content of the SiO2 is larger than 60%, the fusion
temperature is calculated by

T = 10.75·SiO2 + 13.03·Al2O3 − 5.28·Fe2O3

− 5.88·CaO − 10.28·MgO + 3.75·a + 453 (7)
here a = 100 − (SiO2 + Al2O3 + Fe2O3 + CaO + MgO).
When the same data were used to test the predictive per-

ormance of the regression formulas, the maximum error is as
a
p

Fig. 3. Results based on empirical formulas.

uch as 61.54%, and the average error is 8.54%, both of which
re larger than those of the ACO-BP and BP neural networks.
he main reason lies in the fact that the empirical formulas are
nly a rough approximator of nonlinear relationships between
he chemical composition of coal ash and its fusion tempera-
ure based on current samples. However, the real relationships
re more complex. Therefore, the empirical formulas will fail in
ome samples. The predictive results based on the formula are
hown in Fig. 3.

The sample data of coal ash are typically different types
nd ranks from different parts of China, so the well-trained
eural network can work well even when the ranks and types
f coal change a lot. Furthermore, the artificial neural net-
orks have the powerful learning ability. If a new type or

ank of coal does not accord well with the well-trained net-
ork model, the ACO-BP algorithm can be easily retrained

o adjust the weights of the neural network to adapt it. In
ontrast, revising the empirical formula will be a troublesome
rocedure.
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